在Jupyter Notebook中使用TensorFlow
原创2020年9月11日
Jupyter Notebook的环境配置
首先需要下载安装Anaconda
由于我现在使用的最新版本Anaconda自带的Python版本是3.8.5,而截止到写作这篇文章的时候,TensorFlow只支持3.5.X,3.6.X,3.7.X版本的Python,所以安装TensorFlow时需要创建一个新Python 3.7的环境
创建名为tensorflow的python为3.7的环境
conda create -n tensorflow python=3.7
激活新创建的环境
conda activate tensorflow
由于我只需要tensorflow,所以这里只安装tensorflow,需要其他包可以自行conda或者pip安装
conda install tensorflow
安装jupyter
conda install ipython
conda install jupyter
启动notebook
jupyter notebook
使用TensorFlow
下面是notebook上的操作,参考了官网的新手教程
import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
11493376/11490434 [==============================] - 102s 9us/step
上面这一步由于需要从google下载数据,需要连接外网
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
Epoch 1/5
1875/1875 [==============================] - 5s 2ms/step - loss: 0.2979 - accuracy: 0.9137
Epoch 2/5
1875/1875 [==============================] - 5s 2ms/step - loss: 0.1435 - accuracy: 0.9573
Epoch 3/5
1875/1875 [==============================] - 5s 2ms/step - loss: 0.1071 - accuracy: 0.9677
Epoch 4/5
1875/1875 [==============================] - 5s 3ms/step - loss: 0.0888 - accuracy: 0.9728
Epoch 5/5
1875/1875 [==============================] - 5s 2ms/step - loss: 0.0750 - accuracy: 0.9764
<tensorflow.python.keras.callbacks.History at 0x7fa24c207510>
model.evaluate(x_test, y_test, verbose=2)
313/313 - 0s - loss: 0.0764 - accuracy: 0.9749
[0.07642737776041031, 0.9749000072479248]
以上为在jypyter中使用Tensorflow的教程,由于本人是第一次使用python和anaconda以及tensorflow,教程中有不足之处还请谅解。
Loading...